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Abstract– A model was developed to predict the bubble point pressure of saturated reservoirs. The model was based on artificial neural networks and 
was developed using 700 generic data sets which are representative of the Niger Delta region of Nigeria. The data set was first cleaned to remove 
erroneous and repeated data points. After cleaning, 618 data points were remaining. Of the 618 data points, 463 were used to train the ANN model, 93 
were used to cross-validate the relationships established during the training process and the remaining 62 were used to test the model to evaluate its 
accuracy. A backward propagation network utilizing the LM algorithm was used in developing the model. The first layer consisted of four neurons 
representing the input values of reservoir temperature, API oil gravity, gas specific gravity, and solution GOR. The second (hidden) layer consisted of 26 
neurons, and the third layer contained one neuron representing the output value of the bubble point pressure. The results showed that the developed 
model provides better predictions and higher accuracy than the existing empirical correlations considered when exposed to an additional 13 data points 
which were unseen by the model during its development. The model provided predictions of the bubble point pressure with an absolute average percent 
error of 3.98%, RMSE of 177.6479 and correlation coefficient of 0.9851. Trend analysis was performed to check the behavior of the predicted values of 

   for any change in reservoir temperature, oil API gravity, gas gravity and solution GOR. The model was found to be physically correct. Its stability 

indicated that it did not overfit the data, implying that it was successfully trained. 
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1 INTRODUCTION 

HE bubble point pressure      of a hydrocarbon 

system  is defined as the highest pressure at which 

the first bubble of gas is liberated from the oil [1].    

is one of the PVT (“Pressure-Volume-Temperature”) 

parameters. PVT parameters are very important because 

they are required to carry out reservoir performance 

calculations. Hence, it is expedient to accurately determine 

these parameters. Some of the uses of PVT data include: 

a) Reserves calculation. 

b) Material balance calculation (relating reservoir to 

surface volume). 

c) Design of surface operating facilities. 

Conventionally, bubble point pressure can be 

determined from constant composition expansion (CCE) 

test (a.k.a. flash liberation, flash vaporization or constant 

volume expansion). However, in the absence of laboratory 

measured      data, two other methods are used [7]. These 

are: 

a) Equation of State (EOS). 

b) Empirical correlations. 

Equation of State is based on knowing the detailed 

composition of the reservoir fluids [3]. This method is very 

expensive and time consuming. On the other hand, 

empirical correlations are usually developed with linear or 

nonlinear multiple regression or graphical techniques. 

Standing [14], Vasquez and Beggs [15], Glaso [9], Al-

Marhoun [2], Petrosky and Farshad [13] derived 

correlations to estimate bubble point pressure. The main 

objective of this research is to use artificial neural networks 

to develop a model for accurate prediction of bubble point 

pressure using generic data samples that are representative 

of the Niger Delta region. 

As the “neural” part of their name suggest, ANN are 

brain-inspired systems which are intended to replicate the 

manner humans learn [5]. It is based on a collection of 

connected units or nodes called “artificial neurons.” 

Artificial neurons are simplified versions of biological 

neurons in the brains of animals. Just as human beings 

learn from their daily experiences, neural networks require 

data to learn [5]. In most cases (not all), the larger the data 

set used to train the network, the more accurate it will 

become. According to Dormehl [5], before training a neural 

network, the data to be fed into it is divided into three sets. 

Thes are: 

a) Training Data Set: This set of data is used to enable 

the network establish the various weights between 

its nodes. 

b) Validation Data Set: This set is used to fine-tune 

the network after the various weights between the 

nodes have been established. 

c) Test Data Set: This set is used to check if the 

network can successfully turn the input(s) into the 

desired output(s). 

T 
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1.1 Empirical Correlations 

Researchers have proposed several graphical and 

mathematical correlations for determining bubble point 

pressure over the last seven decades. Gharbi et al. [8] stated 

that the correlations are essentially based on the 

assumption that the bubble point pressure is a strong 

function of reservoir temperature (T), solution gas-oil ratio 

      oil specific gravity      and gas specific gravity (  )   

Mathematically: 

                                                                                    (1) 

Standing [14] presented a graphical correlation for 

determining the bubble point pressure of crude oil systems. 

He used 105 experimentally measured bubble point 

pressures on 22 hydrocarbon systems from California 

fields. He reported an average error of 4.8% in comparison 

to experimentally derived bubble point pressures. In 1981, 

Standing represented his graphical correlation in a 

mathematical form and advised that the correlation be used 

with caution if non hydrocarbon components are known to 

be present in the system [1]. Vasquez et al. [15] used 600 

data points from various locations all over the world to 

develop a correlation for bubble point pressure. They 

developed two different types of correlations: one for 

crudes with °API > 30 and the other for crudes with °API   

30. Glaso [9] used 45 oil samples, mostly from the North 

Sea hydrocarbon system to develop a correlation for the 

prediction of bubble point pressure. Al-Marhoun [2] 

developed a correlation for estimating bubble point 

pressure using 160 experimentally derived bubble point 

pressures from the PVT analysis of 69 Middle Eastern 

hydrocarbon mixtures. He reported an average absolute 

relative error of 3.66% when compared with the 

experimental data used to develop the correlation. Petrosky 

et al. [13] used a nonlinear multiple regression software to 

develop a correlation for gas solubility from which the 

bubble point pressure can be determined. They constructed 

a PVT database from 81 laboratory analyses from the Gulf 

of Mexico crude oil systems. According to them, their 

correlation predicts bubble point pressures with an average 

absolute error of 3.28%. 

1.2   Artificial Neural Networks 

An artificial neural network is simply a collection of 

“neurons” with “synapses” connecting them [12]. It is a 

computational method that has the ability to realize an 

input-output mapping even when the exact relationship 

between the input and output is unknown [10]. The 

connection is usually organized into three main layers, 

interconnected by modifiable weights which are 

represented by links [12]. The layers include: 

a) Input layer. 

b) Hidden layer(s). 

c) Output layer. 

 

Fig. 1: Schematic of an Artificial Neural Network. 

Source: Dormehl [5] 

The circles in fig. 1 above represent the neurons while 

the arrows are the modifiable weights. ANNs consist of a 

collection of simple processing units that communicate by 

sending signals to each other over a large number of 

weighted connections. Essentially, they are combinations of 

neurons, biases, activation functions, and links on which 

weights are applied [3]. The links connect neurons in one 

layer to those in the next layer.  

Not quite long, artificial neural networks have been 

used in a number of areas in petroleum engineering. One of 

such areas is the accurate prediction of bubble point 

pressure in the absence of laboratory measurements. 

Gharbi et al. [8] developed a neural network for accurate 

prediction of bubble point pressure as a function of solution 

gas-oil ratio       oil specific gravity    , gas specific 

gravity (  ) and reservoir temperature (T). The authors 

used 498 experimentally obtained data sets of different 

crude oil and gas mixtures from the Middle East region to 

train their neural network. After investigating several 

neural network architectures, they arrived at a conclusion 

that a neural network structure of 4-8-4-1 best predicted the 

bubble point pressure. The authors, after training their 

neural network used 22 additional measured PVT data 

points which were not seen by the network during the 

training phase to validate their neural network. When they 

compared their model output      with the laboratory 

measured data points, they reported an average relative 

error of -1.89%, a standard deviation of 8.91% and a 

correlation coefficient of 0.962. Their model proved to be 

more accurate in predicting bubble point pressure when 

they compared it with the empirically derived correlations 

of Standing, Glaso and Al-Marhoun. Fath et al. [6] 

proposed a recent numerical model based on ANN for the 

prediction of bubble point pressure as a function of solution 

gas-oil ratio       oil gravity      , gas specific gravity (  ) 

and reservoir temperature (T). In developing and 

evaluating their model, the authors used 760 experimental 

data sets gathered from oil fields around the world. Their 

data set which was gotten from literature covered a wide 

range of crude oil samples with different compositions and 

thermodynamic conditions from various geographical 
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locations around the world. They performed an 

optimization process on networks with different structures 

and reported that a network structure of 4-6-1 was 

observed to be the most efficient for predicting the bubble 

point pressure of crude oils. Cuptasanti et al. [4] developed 

a network for predicting    using the MATLAB software. 

The network had a single hidden layer with a structure of 

4-10-1. Inputs to the network were                  while 

the output was   . The authors in developing the FFBP 

network trained it with gradient descent with momentum 

and the LM was the learning algorithm. The network used 

the hyperbolic tangent sigmoid (TANS) transfer function 

between inputs and hidden layers and linear activation 

function for output computations. Kazemi [11] used 

MATLAB to construct FFBP networks with LM 

optimization routine. The entire data set used by the author 

was extracted from 55 PVT reports of the Southern Iranian 

oil fields, Asmari and Bangestan reservoirs. In order to 

accurately predict   , the author trained and tested the 

black oil and the correlation based models using 157 

datasets. The black oil model and the correlation based 

model had similar network structure of 4-6-3-1. However, 

for the black oil model, the author used a log-sigmoid 

transfer function in the first hidden layer and a TANS 

function in the second hidden layer while, the TANS 

function was utilized for both hidden layers in the 

correlation based model. 

2 MODEL DEVELOPMENT 

700 generic data points which are representative of the 

Niger Delta region were used to develop the model. Each 

data point contained: 

a) Solution gas oil ratio     . 

b) Reservoir temperature    . 

c) Gas gravity (  ). 

d) API oil gravity       . 

e) Bubble point pressure       

After cleaning the data to eliminate erroneous and 

repeated data points, 618 data points were remaining. Out 

of the 618 data points, 75% (463 data points) were used to 

train the neural network, 15% (93 data points) were used to 

cross-validate the relationship established during the 

training process while 10% (62 data points) were used to 

evaluate the model’s accuracy. In order to prevent 

problems such as reduced accuracy and network 

instabilities in the course of developing the model, the 

output data was normalized to between {   } using the 

equation below: 

        
         

             
                                                               (2) 

where: 

         is the normalized value of the    variable 

    value of the    variable to be normalized 

        minimum value of the    variable in the data set 

        maximum value of the    variable in the data set 

Statistical descriptions of the data set used in developing 

the model are given in the table below: 

Table 1: Statistical description of data set used in developing the 

model 

 

MATLAB software was utilized in developing the 

model. The inputs to the developed neural network are 

reservoir temperature   , gas gravity (air = 1.0), oil 

gravity       and solution gas oil ratio (scf/STB) while the 

output is bubble point pressure       Levenberg-Marquardt 

(LM), Bayesian Regularization (BR) and Scaled Conjugate 

Gradient (SCG) training algorithms were considered in 

training the model. The LM training algorithm was found 

to be the best training algorithm for the model. The model 

was developed using a Backward Propagation Network 

(BPN). In a BPN, the input is propagated forward while the 

error is propagated backwards. The transfer function of the 

neurons is sigmoid or s-shaped. The sigmoid function has a 

minimum value of zero, a maximum value of one and is 

differentiable everywhere with a positive slope. The form 

of the sigmoid transfer function is: 

     
 

     
                                                                       (3) 

The output from a neuron is expressed using the 

mathematical equation: 

     ∑      
 
                                                 (4) 

where:  

           denote input data. 

                 are attached weights of the lines 

connecting the neurons. 

Properties 
MIN MAX MEAN 

STANDARD 

DEVIATION 

Reservoir 

temp. (°F) 157 281 209 25.1920 

Oil Gravity 

 (°API) 20.70 52.80 36.91 3.6896 

Gas Gravity  

(air = 1.0) 0.579 1.444 0.777 0.1082 

Solution GOR 

(scf/STB) 139.93 2300.00 714.17 393.6164 

Bubble Point 

Pressure (psia) 399 6100 2551 1016.0280 

Description 
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   is the bias. 

    refers to the activation function. 

    is the neuron output. 

 

During training, the network’s errors were computed 

using the backward propagation algorithm. The weights of 

all the interconnections between the neurons were then 

adjusted based on the magnitude of the error and a 

parameter called the learning rate until the ANNs learnt the 

correct input-output behaviors. The training phase took 

several days of computing time to obtain the adequate 

input-output performance. The fitting procedure from 

which the weights of the models were determined was 

performed using a least-squares minimization routine. 

Going by this routine, the sum squared of the relative error 

between the calculated (predicted) and the experimental 

data is to be minimized. The flow chart which illustrates the 

process of developing the model is shown in fig. 2 below. 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Flow chart for Developing the Model Using ANN 

2.1 Statistical Error Analysis 

The performance and accuracy of the newly developed 

ANN model was evaluated by comparing its’ predictive 

capabilities with those of widely accepted correlations. The 

empirical correlations considered were those of Standing, 

Glaso, Al-Marhoun and Petrosky-Farshad.  

First, the ability of the various correlations to predict 

    given the 618 data points used to develop the models 

was compared with that of the new ANN model. 

Thereafter, the newly developed model was used to predict 

    given additional 13 data points which were unseen by 

the model during its development (training, validating and 

testing phases). The empirical correlations were also used 

to predict    of these 13 data points and comparisons were 

made between the predictive capabilities of the ANN 

model and that of the various correlations considered using 

4 common statistical error analysis techniques, namely: 

percentage error, average absolute percentage error, root 

mean square error and correlation coefficient. 

2.2 Graphical Error Analysis 

Cross plots were used to achieve this. It entails plotting the 

predicted values against the experimental values in order to 

obtain a cross plot. Thereafter, a straight line referred to as 

a “perfect model line” is drawn from the origin at an angle 

of 45°. This line represents the points on which the 

predicted values are equal to the experimental values. 

By means of analysis, the closer the cross plot is to the 

perfect model line, the better the accuracy and performance 

provided by the corresponding model. 

3 RESULTS AND DISCUSSIONS 

After comparing several network architectures, a network 

having one hidden layer which contains 26 neurons was 

found to best predict the bubble point pressure. Thus, the 

network architecture of the proposed model is 4-26-1 as can 

be seen in fig. 3 below: 

 

Fig. 3: Network Structure for the Bubble Point Pressure Model 

During training, it was observed that the best 

validation performance was at epoch 35 with a very small 

mean squared error of 0.0023111. The training was stopped 

at this point to avoid the model from memorizing the data 

sets instead of generalizing. Fig. 4 below shows the training 

performance. A close look shows that the training was 

complete as soon as the validation line stopped decreasing. 

Fig. 4 also shows that the MSEs of the ability of the model 

to predict    using the 463 data points for training, 93 data 

points for cross validation and 62 data points for testing is 

very low. 
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Fig. 4: Best Validation Performance of the Model 

 

 

Fig. 5: Error Distribution of the ANN Model 

Fig. 5 above shows that the errors obtained by using 

the developed model in predicting the bubble point 

pressures of the 618 data points is more concentrated 

around the zero error line. The “targets” are the 

experimentally determined bubble point pressures while 

the “outputs” are the bubble point pressures predicted by 

the ANN model. 

The correlations of Standing, Glaso, Al-Marhoun and 

Petrosky-Farshad were used to predict    using the 618 

data points used to develop the ANN model in order to 

determine the performance of the newly developed model. 

The figs below show the result of the various correlations 

considered as well as that of the newly developed model. 

 

 

Fig. 6: Standing's Prediction using the 618 data points 

 

 

Fig. 7: Glaso's Prediction using the 618 data points 

 

 

Fig. 8: Al-Marhoun's Prediction using the 618 data points 
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Fig. 9: Petrosky-Farshad's Prediction using the 618 data points 

 

 

 

Fig. 10: ANN Model's Prediction of the 618 Data Points 

From figs. 6-10 above, it is clear that amongst the 

correlations considered, that of Standing best predicts the 

bubble point pressure given the 618 data points used to 

develop the ANN model in this study. However, it is not as 

accurate as the newly developed ANN model as the plot of 

the new model are more clustered to the unity gradient 

line. 

Again, the ANN was used to predict the bubble point 

pressures of additional 13 data points which were unseen 

to the network during its developmental (training, 

validation and testing) phases. The table below shows the 

comparison between the ANN model and the various 

correlations considered. 

 

Table 2: Statistical Analysis of the Model and Various Correlations 

Model 
 

AAPE RMSE R 

Standing (1947) 
 

12.75 430.4427 0.9680 

Glaso (1980) 
 

16.67 470.3761 0.9798 

Al-Marhoun (1988) 
 

23.17 654.3869 0.9550 

Petrosky-Farshad 

(1993) 
17.77 660.3918 0.9732 

ANN (this study) 
 

3.98 177.6479 0.9851 

 

From table 2 above, it is clear that the new model 

outperforms all the empirical correlations studied in terms 

of the absolute average percent error, root mean square 

error and correlation coefficient. 

 

 

Fig. 11: Comparison between AAPE of Empirical Correlations and 

the Developed Model 

 

Clearly, fig. 11 above shows that the average absolute 

percent error of the developed ANN model is much smaller 

than those of the various correlations considered. 
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Fig. 12: Comparison between RMSE of Empirical Correlations and 

the Developed Model 

 

Fig. 12 clearly shows that the root mean square error of 

the developed model is smaller than those of the empirical 

correlations considered. Fig. 13 below shows that the 

correlation coefficient of the developed ANN model is 

higher than that of the other correlations compared. 

 

 

Fig. 13: Comparison between Correlation Coefficients of Empirical 

Correlations and the Developed Model 

The figs. below show the cross plot of the predictions 

of the various correlations and the ANN model against the 

experimentally obtained values.  

 

Fig. 14: Standing's Prediction 

 

 

Fig. 15: Glaso's Prediction 

  

 

Fig. 16: Al-Marhoun's Prediction 
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Fig. 17: Petrosky-Farshad's Prediction 

 

 

Fig. 18: ANN Model's Prediction 

A close look at the various cross plots (fig. 14 –fig. 18) 

show that the predictions of the ANN model are closer to 

the unity gradient line (perfect model line) than those of the 

empirical correlations considered. 

4 TREND ANALYSIS 

In order to confirm that the newly developed model obeys 

physical law, the model was used to predict    while 

temperature, oil gravity, gas gravity and solution GOR 

were varied independently. The model was tested using 

hypothetical intermediate data points and the dependence 

of    on reservoir temperature (T), oil gravity (°API), gas 

gravity and solution GOR was studied. 

4.1 Effect of Temperature on Bubble Point Pressure 

Temperature was varied between 240°F and 275°F while 

other properties considered were kept constant (oil gravity 

= 35°API, gas gravity = 0.80 and solution GOR = 600scf/stb). 

 

 

 

 

 

Fig. 19: Effect of Temperature on Bubble Point Pressure 

 

As expected from physical laws, the bubble point 

pressure increased with increasing temperature as can be 

seen in fig. 19 above. 

4.2 Effect of Oil Gravity on Bubble Point Pressure 

Oil gravity was varied between 25°API and 35°API while 

other properties considered were kept constant (reservoir 

temperature = 150°F, gas gravity = 0.65 and solution GOR = 

600scf/stb). 

 

Fig. 20: Effect of Oil Gravity on Bubble Point Pressure 

As expected from physical laws, the bubble point 

pressure decreased with increasing oil gravity (°API) as can 

be seen in fig. 20 above. 

4.3 Effect of Gas Gravity on Bubble Point Pressure 

Gas gravity was varied between 0.40 and 0.65 while other 

properties considered were kept constant (reservoir 

temperature = 150°F, oil gravity = 40°API and solution GOR 

= 1200scf/stb). 
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Fig. 21: Effect of Gas Gravity on Bubble Point Pressure 

In line with physical laws, the bubble point pressure 

decreased with increasing gas gravity (air = 1.0) as can be 

seen in fig. 21 above. 

4.4 Effect of Solution GOR on Bubble Point Pressure 

Solution GOR was varied between 200scf/stb and 700scf/stb 

while other properties considered were kept constant 

(reservoir temperature = 150°F, oil gravity = 35°API and gas 

gravity = 0.65). 

 

Fig. 22: Effect of Solution GOR on Bubble Point Pressure 

In line with physical laws, the bubble point pressure 

increased with increasing solution GOR as can be seen in 

fig. 22 above. 

5 CONCLUSION 

This study presents a model for the accurate prediction of 

bubble point pressures of Niger Delta crude oils. Various 

statistical error analysis performed revealed that the model 

is more accurate than existing widely accepted correlations 

in the prediction of bubble point pressure of the Niger 

Delta crude oils. In developing the model, 700 generic data 

points which are representative of the Niger Delta region 

were used. Each data point contained solution gas oil 

ratio       reservoir temperature    , gas gravity (  ), API 

oil gravity        and bubble point pressure     . After 

cleaning the collected data to eliminate erroneous and 

repeated data points, 618 data points were remaining. Out 

of the 618 data points, 75% (463 data points) were used to 

train the neural network, 15% (93 data points) were used to 

cross-validate the relationship established during the 

training process, while 10% (62 data points) were used to 

evaluate the model’s accuracy. Additional 13 data points 

(which were unseen by the model while it was being 

developed) were used to compare the predictive capability 

of the model and those of certain widely accepted 

correlations. The model proved to better predict the bubble 

point pressure than all the correlations tested. Trend 

analysis was also performed on the developed model to 

verify that it obeys physical laws. 

6 NOMENCLATURE 

AAPE:  Average Absolute Percent Error 

ANN: Artificial Neural Network 

BPN: Backward Propagation Network 

BR:  Bayesian Regularization 

CCE: Constant Composition Expansion 

EOS: Equation of State 

LM:  Levenberg-Marquardt 

     Bubble Point Pressure 

PVT:  Pressure-Volume-Temperature 

RMSE:  Root Mean Square Error 

SCG: Scaled Conjugate Gradient 

TANS:  Hyperbolic Tangent Sigmoid Transfer Function 

 

7 APPENDIX 

 Instructions for using the model 

The developed model and its parameters can be made 

available upon request to the author. Thereafter, in 

MATLAB software, change the working directory to the 

requested directory (i.e. folder containing the ANN model). 

Example: 

Calculate the bubble point pressure of reservoir oil with the 

following properties: 
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a) Reservoir temperature = 223ºF 

b) API oil gravity = 34.10 ºAPI 

c) Gas specific gravity = 0.706 

d) Solution gas-oil ratio = 586scf/STB. 

Solution: 

The following command shown in fig. A below should be 

entered in the MATLAB command window after clearing 

the workspace and loading the ANN model. Pb_calc gives 

the bubble point pressure of the given reservoir oil. 

 

Fig. A: Instructions on using the model 
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